
EE 435

Lecture 35

Current Steering DACs



Basic R-String DAC 

• Another Segmented DAC structure

• Can be viewed as a “dither” DAC

• Often n1 is much smaller than n2

• Dither can be used in other applications as well
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Review from Last Lecture



Switch Implementation Issues

n-channel

p-channel

T-gate

Switches used extensively in data converters ! 

Basic Simple Switches

Review from Last Lecture



Current Steering DACs 
Current will be “steered” to a resistive load (on chip)

Output could be a current (user supplies load)
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Basic Concept of Current Steering DACs
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Current Steering DACs 
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What is important is the current generated, not whether it 

comes from a “current source” 

I

d2 dN-1

1

2

RF

VXX

IOUT

OUT=kI I

I I

d1

R
RVBB

VDD

I I I I I

VDD VDD VDD VDD VDD

I

?

Many potential current generator blocks, just require that all be ideally identical
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Current Steering DACs 
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Inherently Insensitive to Nonlinearities in Switches and Resistors

Smaller ON resistance and less phase-shift from clock edges

• Termed “bottom plate switching”

• Thermometer coded

Review from Last Lecture



Current Steering DACs 

T-gate
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Current Steering DACs 
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How should the op amp be compensated?



T-gate
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How should the op amp be compensated?



Current Steering DACs 
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Current Steering DACs 
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Switch Implementation Issues

n-channel

p-channel

T-gated

d

d

Switches used extensively in data converters ! 

Basic Simple Switches
Basic Current Steering

d

I

d

• Transistors avoid triode region and 

deep cutoff

• Reduced Boolean Input Levels

Transistors switch between deep cutoff and deep triode



Current Steering DACs 

PELA

A
 =

Consider a k-bit structure that has an acceptable (and desired) yield of Y

Can a k+1 bit structure be easily implemented by simply making 2 copies of the 

resistor array and adding one bit to the decoder?

The one-afternoon design ?
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Current Steering DACs 

R

S1I1
S2I2

VREF

RF

1
2

n
XIN

S3I3
SnIn

R

2 2

R

2 n-1

R

2

VOUT

Binary-Weighted Resistor Arrays

• Need for decoder eliminated !

• Same number of unit resistors as for thermometer coded structure

• DNL may be a major problem

• INL performance about same as thermometer coded if same unit resistors used

• Sizing and layout of switches is critical

• Unary resistor arrays usually used with common-centroid layout(at least for MSB)

• Ratio matching strongly dependent upon area (if common-centroid used to eliminate gradients)

• INL is a random variable with variance approximately proportional to

• Area gets large for good yield with large n 

Observe thermometer coding and binary weighted both offer some major 

advantages and some major limitations

PELA

A
 =

Can benefits of thermometer coded and binary weighted structures be obtained?

• Thermometer coding (particularly of MSBs) reduces DNL

• Binary coding reduces/eliminates binary:thermometer decoder



Current Steering DACs 
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Binary-Weighted Resistor Arrays

Actual layout of resistors is very important

As stated earlier, bundled unary cells are almost always used

Common centroid layout is desired but may not be practical with 

a large number of elements



Current Steering DACs 

Segmented  Resistor Arrays
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• Combines two types of architectures

• Inherits advantages of both thermometer and binary approach

• Minimizes limitations of both thermometer and binary approach



R-2R  Resistor Arrays

R R R R

2R 2R 2R 2R R

• 4 bit-slices shown

• Can be extended to arbitrary number of bit slices

• Conceptually, area goes up linearly with number of bit slices



Current Steering DACs 

R-2R  Resistor Arrays
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Node voltages ideally stay constant for any input code

Highly sensitive to nonlinearities in switches

How should switches be sized?

Eliminates need for decoder



Current Steering DACs 

R-2R  Resistor Arrays
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R-2R Implementation 
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• Unit cell widely used

• Switch included in cell even if not switched!

• Switches always ON in series elements in R-2R array

• Code dependence of switch impedance of concern

How can switch impedances be matched?



Another R-2R DAC 
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Another R-2R DAC 
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Requires matching both current sources and resistors

Switch impedance does not affect performance

β is independent of Boolean code

Node voltages in R/2R block must change for any input transitions

Voltages on internal R-2R nodes must settle with input transitions



Another R-2R DAC 
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Clocks must be nonoverlapping

Does this offer any benefits over previous approach ?

Offers some compensation for capacitances on current sources 

Are there other terminations for the current sources? e.g.  Dual R-2R?



Data Converter Design Strategies

Performance Threshold

Remember: 
 Need to keep nonideal effects below an acceptable performance threshold  



R-2R DACs 
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Bit Slice

Key characteristic of R-2R Structures

• Area increases linearly with number of bits of resolution

• Binary to thermometer/bubble converter eliminated 

• Simple unary cell can be used for R elements

• Common-centroid layout manageable ??

Key challenges of R-2R Structures

• Switches directly affect R-2R values and ratios

• Voltage on internal nodes must settle for some structures

• If unary cell used, area not optimally allocated for matching



Current Steering DAC
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Current Steering DAC

Critical parasitic capacitors in current-steering DAC
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Current Steering DAC
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• Binary to thermometer decoder eliminated

• Current sources bundled unary cells

• Bundles large for large n



Current Steering DAC
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Segmented Structure

• Exploits  benefits of both thermometer and binary coded structures

• Common-centroid layout likely only necessary on TCA

• Dramatic reduction in complexity of decoder possible



Current Steering DAC
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Not if individual slices are matched !



Current Steering DAC
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Current Steering DAC
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Current Steering DAC
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Which is better?

Effects of parasitic diffusion capacitance?

Effects of gate capacitance?

Alternative current source cells



Current Steering DAC
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Op Amp can be eliminated so speed can be increased and 

power reduced

RTERM often 50Ω or  100Ω

RTERM can be internal or external

Switch impedance now of concern

Output impedance of current sources now of concern



Current Steering DAC
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Boolean Switch Cell

Cascoding reduces output conductance of current source

No power penalty, slight reduction in overhead



Current Steering DAC
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Steer rather than switch current

Reduced swing on control signals



Current Steering DAC
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Current Steering DAC
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• Need only signal swing of             to steer currents (so can reduce turn-on and turn-off times)

• Steering also results in cascoding with M3 and M4 thus increasing output 

impedance of current source (so can probably eliminate M2) 
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Current Steering DAC
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Current Steering DAC
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Current Steering DAC
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Simulation Results: VTH=0.4V, VMIN=0.6V, VMAX=1.07V,VEB=0.3V,γ=1.1

VS swing about 100mV



Multiple-output Transconductance Amplifier
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• Good linearity

• Each additional output requires only one additional transistor

• Relevant if MDAC output desired

• Cascoding of output devices useful if driving resistive load



Current Steering DAC with Supply 

Independent Biasing
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Thermometer coded structure (requires binary to thermometer decoder)

N 1
REF

A i
i 0

V
I d

R

−

=

 
=  
 

N=2n



Current Steering DAC with Supply 

Independent Biasing

If transistors on top row are all matched, IX=VREF/R

Provides Differential Output Voltages
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Current Current Steering DAC with 

Supply Independent Biasing
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Usually use bundled unary cells

Can use current steering rather than current switching

(switched LSB:MSB notation)



Stay Safe and Stay Healthy !



End of Lecture 35
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